
SwiftScale: Technical Approach Document

Overview
This document outlines a technology embodiment of the SwiftScale application including the

technology, deployment and application architectures.

Technology Architecture
This proposed architecture will be composed of three server side tiers and a client tier. The initial

deployment of the client tier will be based on HTML5, and subsequently native applications will be

considered.

Client Tier

Goals for the client tier include avoidance of OWASP vulnerabilities, a high degree of interactivity, solid

support for separating design and logic implementation skill sets, and support for metadata driven UI

elements. Both native applications and Single Page Apps will be deferred to start. Upon introduction of

an SPA, an object-capability such as Google’s Caja would be required to manage client side

vulnerabilities. For the time being, HTML5 browser capabilities have improved dramatically enabling

highly fluent user experience while the risk of managing device resident information in a secure manner

has not yet sufficiently matured.

The server side tiers will be:

 Web Session / Interactivity Tier

 REST API

 Database

Interactivity Tier

The interactivity tier will be hosted by the Lift application server. Lift provides a high degree of

interactivity through AJAX and Comet. Some benefits of Lift are provided on the Lift website here:

http://seventhings.liftweb.net/index

Benefits key to SwiftScale requirements include:

Security – “resistant” to OWASP Top 10

“Lift at its core seeks to abstract away the HTTP request/response cycle rather than placing object

wrappers around the HTTP Request. At the practical level, this means that most any action that a user

can take (submitting form elements, doing Ajax, etc.) is represented by a GUID in the browser and a

function on the server. When the GUID is presented as part of the an HTTP request, the function is

applied (called) with the supplied parameters. Because the GUIDs are hard to predict and session-

http://seventhings.liftweb.net/index

specific, replay attacks and many parameter tampering attacks are far more difficult with Lift than most

other web frameworks, including Spring. It also means that developers are more productive because they

are focusing on user actions and the business logic associated with user actions rather than the plumbing

of packing and unpacking an HTTP request. “

“Lift's philosophy of GUID associated with function has the dual benefit of much better security and much

better developer productivity. The GUID -> Function association has proven very durable... the same

construct works for normal forms, ajax, comet, multi-page wizards, etc.”

“The next core piece of Lift is keeping the high level abstractions around for as long as possible. On the

page generation side, that means building the page as XHTML elements and keeping the page as

XHTML until just before streaming the response. The benefits are resistance to cross site scripting errors,

the ability to move CSS tags to the head and scripts to the bottom of the page after the page has been

composed, and the ability to rewrite the page based on the target browser. On the input side, URLs can

be re-written to extract parameters (both query and path parameters) in a type-safe manner, high level,

security checked data is available for processing very early in the request cycle.”

“The last part of Lift's security focus is SiteMap. It's a unified access control, site navigation, and menu

system. The developer defines the access control rules for each page using Scala code

(e.g. If(User.loggedIn _) or If(User.superUser _)) and those access control rules are applied before

any page rendering starts.”

Very interactive – Lift provides a direct and simple method for supporting Comet and Ajax. Lift models

small grain units of interaction called snippets rather than fitting interactivity under a coarser grain

model of the HTTP protocol as is common in classic MVC based application servers.

Designer friendly – UX defined separately from coded functionality. Lift support HTML5 (and XHTML)

templates and doesn’t require designers to learn a new tag or object language. Designers and

developers have a clean contract to coordinate working together.

Lift will require sticky session load balancing so deployment and application architecture must take this

into account. Scaling out will require greater deliberation. But in exchange, interaction context is

managed by Lift and not the applications increasing the reliability of more sophisticated interactions.

Lift has reasonable built-in authentication allowing the introduction of centralized SSO capability (e.g.

Apache Shiro) to be deferred. As the breadth of the solution increases supported by a loosely coupled

architecture, this deferral will need to be revisited. Lift-Shiro integration projects should ease this

transition.

API Tier

Scalatra is a light weight and fast framework very handy for supporting APIs. The Swagger API code

generator can expedite the creation of the more basic API capabilities. Behind Scalatra, an actor model

is supported through Akka. Actor models provide the very responsive, event driven message processing,

the ability to implement capability based security models and the ability to expose the operational

semantics as a trace of message activity. Supervisory actor models provide the opportunity for higher

level supervisor actors to intervene when threat activity is detected either on a policy or statistical basis.

There is also the opportunity to “replay” actor sequences if a perceived potential threat event turns out

to be harmless. To protect confidential information, access would be exposed as a set of capabilities

based on the principle of least privilege through actors. The message trace of activity is exposed to

supervisory actors who enforce policies across the trace and intervene according to policy specified

actions when suspect activity is encountered. If the activity is interpreted as a threat incident, the

activity will be aborted and higher level supervisor actors will clean up, report the incident and

terminate the activity of the principal driving the access attempts while maintaining the trace history of

activity to that point. There is the possibility of false positive incident detection. An additional layer of

confirmation can request evidence that the principal’s access was authorized and not a thread, and the

activity preceding the declaration of the false threat incident to that point can be replayed, facilitating

bringing the principal back to their last point of action.

An example of such monitoring policy would be to continuously examine the trace of activity looking for

a pattern of information lookup failures that would be typical of intruder probing to find weakness at

the early stage of an attack. A simple case would have the same principle issuing failing access requests

in a short period of time.

DB Tier

MongoDB provides scalable, “document style” persistence that works well with “polystructured” data

such as that defined through SwiftScale metamodel based Profiles. MongoDB’s architecture strikes a

balance between managing consistency of updates and scaling out to support large numbers of users.

MongoDB also has built-in support for file management through GridFS. This capability serves to

manage due diligence evidence in the form the various kinds of file artifacts while keeping underlying

evidence artifacts synchronized with the associated summarizing Profiles created by the reviewing

Subject Matter Experts.

Much of the architectural tier infrastructure is based on Scala, a high level, very expressive language

with direct access to the huge set of Java libraries. Scala runs on tried and true JVMs which provide a

very efficient execution foundation. The strong and flexible typing facilitates security and cross cutting

functionality can be encapsulated well in Scala traits, but support for Aspects work as well.

Casbah provide Object Document Mapping supporting access to MongoDB mapping Scala objects to

MongoDB documents. Casbah also provides support for GridFS.

Since SwiftScale data is a high value target, all data should be encrypted at rest and in flight. At rest

encryption can be provided by Gazzang which encrypts the data at the file system level.

Information Partitioning

As the volume of data stored in SwiftScale grows, a method to scale storage becomes essential. A
common method to scale storage is to partition data across multiple storage servers and volumes.
Requests for information are then dispatched to the appropriate partitions based on the values of some
set of application information elements serving as the partition keys. To this end, it is helpful to select in
the data architecture of SwiftScale which application data fields will serve as the partition keys.

SwiftScale has a natural fissure upon which a partitioning can be implemented. Each Organization
manages a pool of information and information flows between Organizations tends to be restricted due to
confidentiality needs. Though two Organizations may elect to become very intimate and extensively
share information, that sharing doesn’t tend to extend to other Organizations simultaneously.

Though Organization provides a partitioning element, the specific partitioning implementation entails a
strategy which requires more general properties of the partitioning keys. By itself, Organization may not
have high enough cardinality for the partitioning to scale adequately. MongoDB recommends monitoring
the growth of the data store and after having identified the growth dimensions, refining the partitioning
strategy.

Deployment

The following is a diagram of a sharding version of the deployment architecture.

